繁体字转换器乐虎娱乐官方网站旗下考试题库之数学试题栏目欢迎您!
1、试题题目:已知抛物线C:y2=2px(p>0)上任意一点到焦点F的距离比到y轴的距离大..

发布人:乐虎娱乐官方网站( www.lehu.com) 发布时间:2016-01-05 07:30:00

试题原文

已知抛物线C:y2=2px(p>0)上任意一点到焦点F的距离比到y轴的距离大1.
(1)求抛物线C的方程;
(2)若过焦点F的直线交抛物线于M、N两点,M在第一象限,且|MF|=2|NF|,求直线MN的方程;
(3)求出一个数学问题的正确结论后,将其作为条件之一,提出与原来问题有关的新问题,我们把它称为原来问题的一个“逆向”问题.
例如,原来问题是“若正四棱锥底面边长为4,侧棱长为3,求该正四棱锥的体积”.求出体积
16
3
后,它的一个“逆向”问题可以是“若正四棱锥底面边长为4,体积为
16
3
,求侧棱长”;也可以是“若正四棱锥的体积为
16
3
,求所有侧面面积之和的最小值”.
现有正确命题:过点A(-
p
2
,0)
的直线交抛物线C:y2=2px(p>0)于P、Q两点,设点P关于x轴的对称点为R,则直线RQ必过焦点F.
试给出上述命题的“逆向”问题,并解答你所给出的“逆向”问题.

  试题来源:不详   试题题型:解答题   试题难度:中档   适用学段:高中   考察重点:圆锥曲线综合



2、试题答案:该试题的参考答案和解析内容如下:
(1)由已知及抛物线的定义可得:
p
2
=1,即p=2,所以抛物线C的方程为:y2=4x(4分)
(2)设N(
t2
4
,-t)
(t>0),则M(t2,2t),F(1,0).
因为M、F、N共线,则有kFM=kNF,(6分)
所以
-t
1
4
t2-1
=
2t
t2-1
,解得t=
2
,(8分)
所以k=
2
2
2-1
=2
2
,(10分)
因而,直线MN的方程是y=2
2
(x-1)
.(11分)
(3)“逆向问题”一:
①已知抛物线C:y2=2px(p>0)的焦点为F,过点F的直线交抛物线C于P、Q两点,
设点P关于x轴的对称点为R,则直线RQ必过定点A(-
p
2
,0)
.(13分)
证明:设过F的直线为y=k(x-
p
2
),P(x1,y1),Q(x2,y2),则R(x1,-y1
y2=4x
y=k(x-
p
2
)
k2x2-(pk2+4)x+
1
4
p2k2=0

所以x1x2=
p2
4
,(14分)
kRA=
-y1
x1+
p
2
=-
k(x1-
p
2
)
x1+
p
2
,(15分)
kQA=
k(x2-
p
2
)
x2+
p
2
=
k(x1x2-
p
2
x1)
x1x2+
p
2
x1
=-
k(x1-
p
2
)
x1+
p
2
=kRA,(16分)
所以直线RQ必过焦点A.(17分)
②过点A(-
p
2
,0)
的直线交抛物线C于P、Q两点,FP与抛物线交于另一点R,则RQ垂直于x轴.
③已知抛物线C:y2=2px(p>0),过点B(m,0)(m>0)的直线交抛物线C于P、Q两点,设点P关于x轴的对称点为R,则直线RQ必过定点A(-m,0).
“逆向问题”二:已知椭圆C:
x2
a2
+
y2
b2
=1
的焦点为F1(-c,0),F2(c,0),
过F2的直线交椭圆C于P、Q两点,设点P关于x轴的对称点为R,则直线RQ必过定点A(
a2
c
,0)

“逆向问题”三:已知双曲线C:
x2
a2
-
y2
b2
=1
的焦点为F1(-c,0),F2(c,0),
过F2的直线交双曲线C于P、Q两点,设点P关于x轴的对称点为R,则直线RQ必过定点A(
a2
c
,0)
3、扩展分析:该试题重点查考的考点详细输入如下:

    经过对同学们试题原文答题和答案批改分析后,可以看出该题目“已知抛物线C:y2=2px(p>0)上任意一点到焦点F的距离比到y轴的距离大..”的主要目的是检查您对于考点“高中圆锥曲线综合”相关知识的理解。有关该知识点的概要说明可查看:“高中圆锥曲线综合”。


4、其他试题:看看身边同学们查询过的数学试题:

数学试题大全 2016-01-05更新的数学试题 网站地图 | 乐虎娱乐官方网站 -- 为探究古典文化架桥,为弘扬中华文明助力!
版权所有: CopyRight © 2010-2014 www.lehu.com All Rights Reserved.
联系我们: